

Pakistan Academy of Engineering

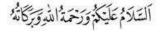
PROCEEDINGS

36th Symposium

"Prospects of Additive Manufacturing in Pakistan"

June 21st, 2025

Contents


S. No.	Particulars	Page No
1	Message from the President	1
2	Programme of the 36th Symposium	2 - 3
	Welcome Address	
3.1	by	4 - 6
3.1	DrIng. Jameel Ahmad Khan	
	President of PAE	
	Presentation:	
	"Where can Laser Powder Bed Fusion make an impact	7 - 18
3.2	in the Pakistani Market?"	
3.2	by	
	Mr. Syed Ahmad Nameer, Partner Manager, Middle East and	
	Eastern Europe , EOS, Germany.	
	Presentation:	
	"Printed Electronics "	19 - 41
	by	
3.3	Dr. Khalid Rahman , Professor - Faculty of Mechanical Engineering,	
	Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi,	
	Pakistan.	
	Presentation:	
	"Additive Manufacturing in Pakistan: Current	42 - 54
3.4	Penetration and Key Challenges"	
J.T	by	
	Engr. Dr. Shaheryar Atta Khan, HoD (Mechanical Engineering), DHA Suffa University, Karachi, Pakistan.	

Contents

S. No.	Particulars	Page No.
	Presentation:	
	"Opportunities and Challenges for Pakistan in Additive	55 - 60
3.5	Manufacturing?"	
3.3	by	
	Engr. Dr. Waqas Ahmed, Associate Professor, NUST Business	
	School, Islamabad, Pakistan.	

1. Message from the President

My Dear Fellows and Readers,

With the great feeling of accomplishment and satisfaction, on behalf of The Pakistan Academy of Engineering (PAE), I present to you the proceedings of the **36**th **Symposium** of The PAE on the topic of **"Prospects of Additive Manufacturing in Pakistan"**, held on **June 21**st, **2025**, at PAE, Gulshan-e-Iqbal, Karachi.

First I would like to thank

Mr. Syed Ahmad Nameer, Partner Manager, Middle East and Eastern Europe, EOS, Germany

Dr. Khalid Rahman, Professor - Faculty of Mechanical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan.

Engr. Dr. Shaheryar Atta Khan, HoD (Mechanical Engineering), DHA Suffa University, Karachi, Pakistan. Mr. Nabeel Khan, Project Manager, Binghalib Engineering Ltd, Dubai, UAE.

Here I would also acknowledge the support of the Council members & Staff of The Pakistan Academy of Engineering (PAE) for their relentless support and assistance.

Finally, I hope that the readers will find the document useful and will gain knowledge and insight in the context of this complex and critical topic.

Very sincerely yours,

Dr.-Ing. Jameel Ahmad Khan

President,

The Pakistan Academy of Engineering (PAE)

2. Programme of the 36th Symposium

The Pakistan Academy of Engineering

On behalf of the President, Dr.-Ing Jameel Ahmad Khan, and the Council Members of the Pakistan Academy of Engineering, we cordially invite you to grace the 36th Symposium on "Prospects of Additive Manufacturing in Pakistan" The event details are as follows:

Date: Saturday, June 21, 2025
Time: 10:00 AM – 1:30 PM (GMT+5)
Platform: In-person and Online via Zoom

Link: https://us06web.zoom.us/j/84314695435

The program will feature distinguished speakers who will shed light on Prospects of Additive Manufacturing in Pakistan.

Attached is detailed information about the program, including the schedule and the distinguished speakers who will address the event.

Thank you for considering our invitation, and we eagerly await your presence at this prestigious event.

Sincerely,

Prof. Brig.(R) Dr Nasim A. Khan (SI), Executive Secretary, Pakistan Academy of Engineering.

Tel.: +92 213 483 17 26, Tel.2: +92 213 341 821 05

E-mail: drnasimakhan@pacadengg.org
Website: http://www.pacadengg.org

2. Programme of the 36th Symposium

The Pakistan Academy of Engineering

36th Symposium: Prospects of Additive Manufacturing in Pakistan

scheduled on Saturday, June 21, 2025 Online via Zoom

Programme

Details		Time
1.	Recitation from the Holy Quran By Mr Hafiz Mustafa Ahmed Sharief, Manager Operations, The Pakistan Academy of Engineering, Karachi, Pakistan.	1000 hrs 1005 hrs
2.	Presidential Address By Dr – Ing. Jameel Ahmad Khan, The President, The Pakistan Academy of Engineering, Karachi, Pakistan.	
	Where can Laser Powder Bed Fusion make an impact in the Pakistani Market? By Mr. Syed Ahmad Nameer, Partner Manager, Middle East and Eastern Europe, EOS, Germany.	1010 hrs
	Printed Electronics By Dr. Khalid Rahman, Professor - Faculty of Mechanical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan.	1050 hrs
	Additive Manufacturing in Pakistan: Current Penetration and Key Challenges By Engr. Dr. Shaheryar Atta Khan, HoD (Mechanical Engineering), DHA Suffa University, Karachi, Pakistan.	1130 hrs
	Opportunities and Challenges for Pakistan in Additive Manufacturing By Engr. Dr. Waqas Ahmed, Associate Professor, NUST Business School, Islamabad, Pakistan.	1210 hrs
3.	Discussion and Closing Remarks	1250 hrs

36th Symposium: "Prospects of Additive Manufacturing in Pakistan"

scheduled on Saturday, June 21st, 2025 Address of the President **Dr. -Ing. Jameel Ahmad Khan**

Respected Speakers,
My dear fellow Engineers,
Honourable Guests,

Ladies and Gentlemen!

SALAMUN ALA MANIT-TABA'AL-HUDA

It is my honour and privilege to address this esteemed gathering at the symposium on "Prospects of Additive Manufacturing in Pakistan." We stand at the crossroads of an industrial transformation, where additive manufacturing (AM) is redefining production processes, reshaping global economies, and enabling technological breakthroughs in multiple sectors.

Additive manufacturing, commonly known as 3D printing, has evolved from a prototyping tool into a cornerstone of Industry 4.0. The global AM market is projected to reach \$57.1 billion by 2028, driven by aerospace, automotive, healthcare, and consumer goods applications. Countries such as the United States, Israel, China, Germany, and Japan are leading in AM adoption, investing heavily in research and commercialisation.

3.1. Welcome Address of 36th Symposium by President PAE, Dr.-Ing. Jameel Ahmad Khan, Continued...

With advancements in material science, including polymers, metals, ceramics, and composites, AM is now enabling mass production, supply chain resilience, and sustainable manufacturing. The U.S. leads in industrial AM adoption, with China, Japan, and Germany also advancing rapidly.

The Asia-Pacific AM market was valued at \$4.3 billion in 2023 and is forecasted to reach \$11 billion by 2028. China dominates this sector, focusing on large-scale AM applications.

Japan and South Korea are pioneering high-precision technologies, while India is expanding its AM ecosystem through government-backed initiatives.

A key industry trend is the shift from **proprietary closed-loop systems to open-material platforms**, reducing costs and promoting innovation. Hybrid manufacturing—combining AM with traditional machining—is also improving efficiency and scalability.

Despite global growth, Pakistan's AM sector remains in its infancy. Its adoption is primarily limited to universities, research institutions, and small-scale service providers.

GIKI, NUST, and a few other institutions have made commendable progress, but industrial-level implementation is minimal due to:

- High initial investment costs
- Limited availability of advanced AM materials
- Lack of skilled workforce
- Limited industry awareness and adoption
- Absence of a structured AM policy framework

3.1. Welcome Address of 36th Symposium by President PAE, Dr.-Ing. Jameel Ahmad Khan, Continued...

Currently, Fused Deposition Modeling (FDM) and Stereolithography (SLA) are the most widely used AM technologies in Pakistan, mainly in healthcare and jewellery. However, Selective Laser Sintering (SLS) and Direct Metal Laser Sintering (DMLS) are virtually absent. Pakistan must embrace additive manufacturing as a driver of economic growth, import substitution, and industrial self-reliance. Together, we can position Pakistan as a leader in advanced manufacturing technologies.

I extend my sincere gratitude to the esteemed speakers for their valuable contributions to this symposium. Together, let us pave the way for a future where Pakistan stands at the forefront of scientific and industrial innovation.

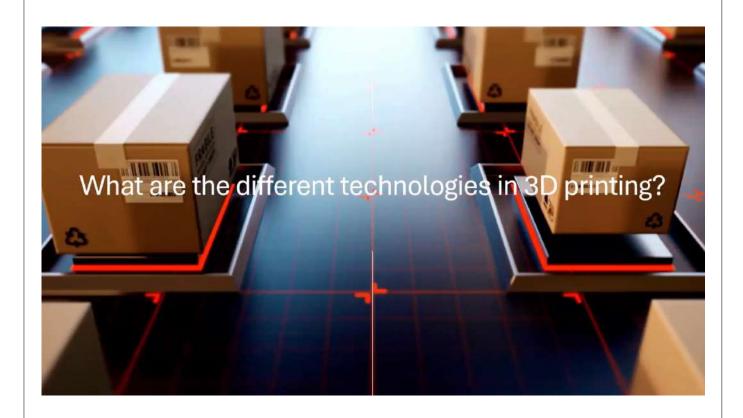
Thank you, Ladies & Gentlemen.

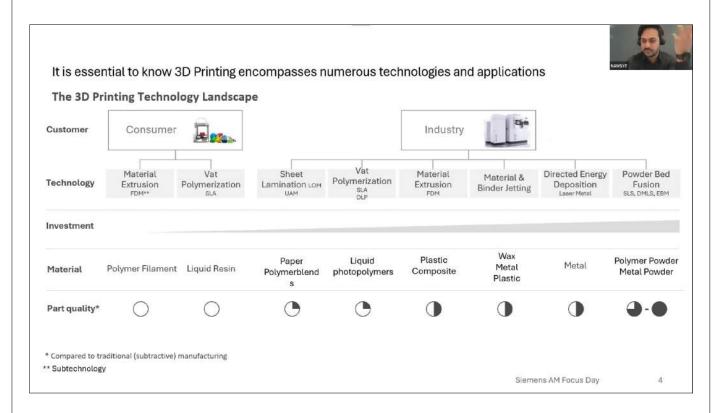
by

Mr. Syed Ahmad Nameer, Partner Manager, Middle East and Eastern Europe, EOS, Germany.

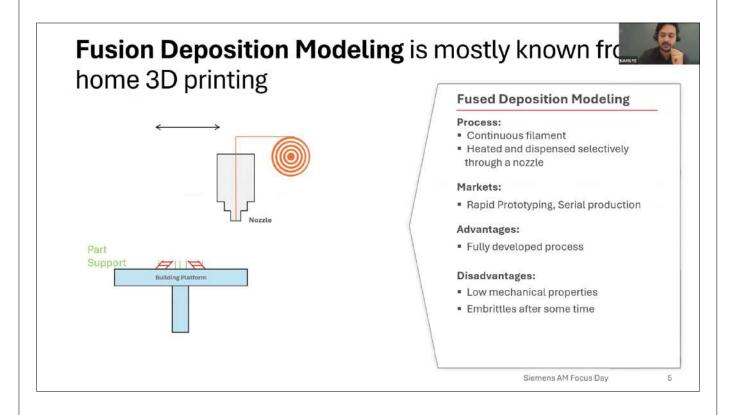
Where can Laser
Powder Bed Fusion
make an impact in the
Pakistani Market?

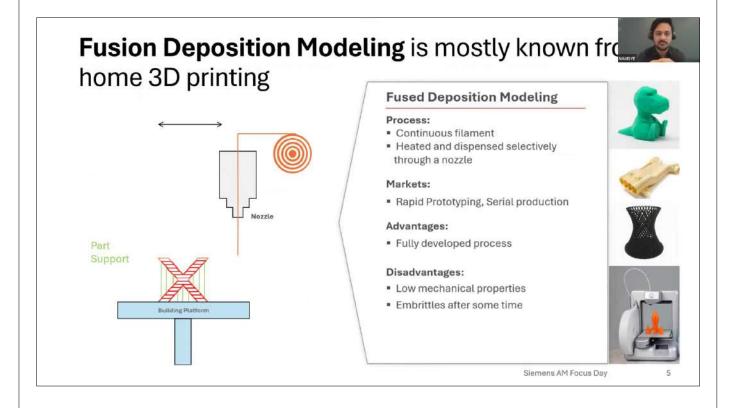
Syed Ahmad Nameer


Who Am I?


- · Syed Ahmad Nameer
- · Partner Manager, Middle East and Eastern Europe
- · 7+ years at EOS GmbH
- Profile
- B.Eng in Mechanical Engineering from NUST in 2015
- M.Sc Management, Majors in Business Analytics from ESMT Berlin in 2019
- Executive Advanced Business Analytics, MIT Sloan School of Management in 2021

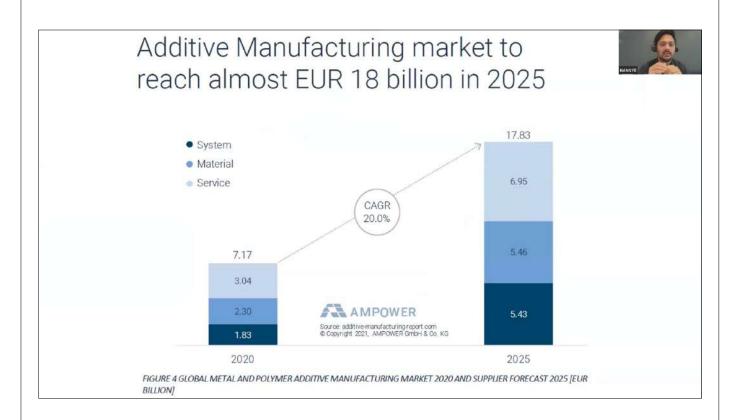
by Mr. Syed Ahmad Nameer, Partner Manager, Middle East and Eastern Europe, EOS, Germany.

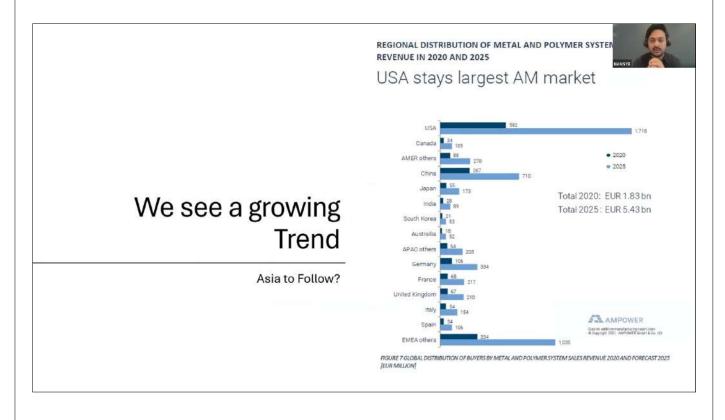

Continued...



by Mr. Syed Ahmad Nameer, Partner Manager, Middle East and Eastern Europe, EOS, Germany.

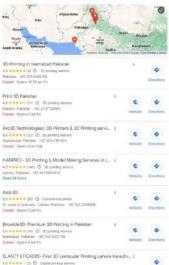
Continued...


by Mr. Syed Ahmad Nameer, Partner Manager, Middle East and Eastern Europe, EOS, Germany.

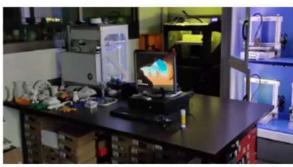

Continued...

Powder Bed Fusion provides the best results among Additive Manufacturing technologies **Powder Bed Fusion** Scanner Process: Recoater Laser beam fuses selected areas of a powder bed Markets: Rapid Prototyping, serial production Advantages: · High mechanical properties High detail resolution Disadvantages: **DMLS** Limited build space High cost Siemens AM Focus Day

by Mr. Syed Ahmad Nameer, Partner Manager, Middle East and Eastern Europe , EOS, Germany. **Continued...**



by Mr. Syed Ahmad Nameer, Partner Manager, Middle East and Eastern Europe, EOS, Germany.


Continued...

Competitive Landscape of Pakistani Market

- 10+ vendors operating in Pakistan only on FDM low end quality market
- No vendor in Laser powder bed fusion
- No vendor in high end FDM market
- No manufacturing company owns or has a 3d printer in-house
- No process plants in Pakistan owns a 3d printer in-house
- Confined to service provider business and university projects and that too only focused on FDM low end quality
- Medical market untapped implants still imported

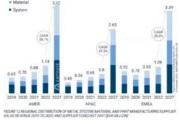
Neighbouring Market

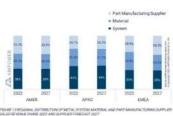
Are we not even in the same league?

- India has already surpassed 100M€ only in spending on 3d printer machines this number is already on the rise and expected to be 150M€ end of 2024
- India has 10k+ FDM machines and 200+ L.PBF machines
- China is another league matching European and US market China has spent 1B6+ only in spending on 3d printers
- Pakistan has not even reached 1M€ in machine sales
- This represents Pakistan's inactive presence in purchasing of 3d printers
- No information found on a laser powder bed fusion machine in Pakistan
- All FDM machines

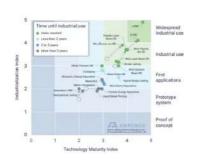
India's 3d printing market on the rise

We are already too far behind but it is never too late... More delays will take us completely out of the game


by Mr. Syed Ahmad Nameer, Partner Manager, Middle East and Eastern Europe, EOS, Germany.


Continued...

AM Power Top-Down Analysis



- 1.09B in 2022 expected to go up to 3.39B in 2027 in EMEA (see fig on left)
- With 35%-part manufacturing share (see fig on left, AMPower) -> 0.38B€ in 2022 expected to go up to 1.198€ in 2027 in EMEA
- Pakistan's share is not accounted for but if we assume a 0.5% share stake -> 1.9M€ in 2022 expected to go up to 5.9M€ in 2027 in EMEA

Source: AMPower 2023; https://www.nextmsc.com/news/middle-east-additive-manufacturing-marke; https://www.voxelmatters.com/the-top-10metal-am-companies-by-revenue/t

by Mr. Syed Ahmad Nameer, Partner Manager, Middle East and Eastern Europe, EOS, Germany.

Continued...

Maturity Index – L-PBF is on top

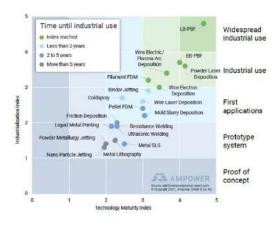
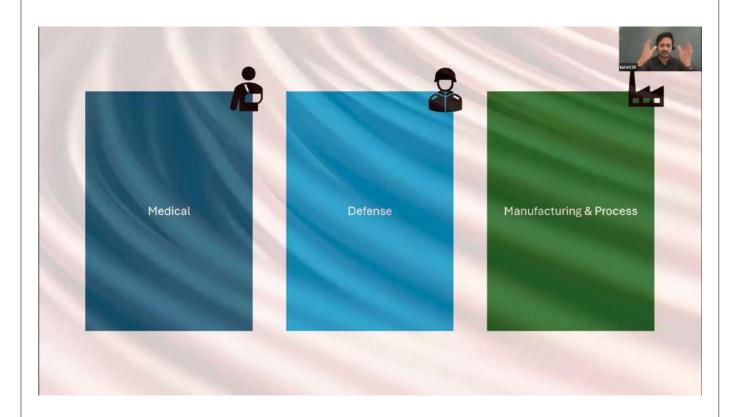
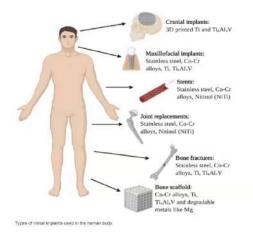



FIGURE 18 METAL AM MATURITY INDEX 2021

FIGURE 19 POLYMER AM MATURITY INDEX 2021



by Mr. Syed Ahmad Nameer, Partner Manager, Middle East and Eastern Europe, EOS, Germany.

Continued...

Potential of Pakistani Market?

More than 200,000 hip replacement surgeries occur in Pakistan per each year

One Implant can cost around 500\$

All via either traditional methods or export as 3d printed metal implant market is non existing in Pakistan

In one hospital: (LNH)

- 14,875 people had total knee replacement
- 5,167 people had total hip replacement

Source: Benčina, Metka & Resnik, Matio & Starić, Pie & Junkar, Ita. (2021). Use of Plasma Technologies for Antibacterial Surface Properties of Metala. Molecules. 26. 10.3390/molecules28051418.
Bukhari, Syed Imman & Alliana, Asad & Rahim Najjad, Muhammad & Noor, Shahid, (2023). Epidemiology of hip & knee replacement across Pakistan according to Pakistan national joint registry. A cross-sectional study. Pakistan Journal of Medical Sciences. 39.
10.12080/pimp.35.7000.
11.02080/pimp.35.7000.

Orthosis & Prosthesis

More than 1,000,000 people in Pakistan are physically disables

One prosthetic limb can roughly cost around Rs350,000 /-

All via either traditional methods or export as 3d printed prosthetics and orthotics market is non existing in Pakistan

According to Dr Sarwar, with a population of 45 million people, Sindh is estimated to have about 450,000 people in need of prosthetics and orthotics services.

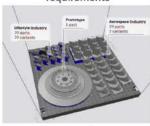
Source: BASE; Dawn; https://folhus.org/prosthetic-limb/

17

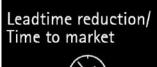
by Mr. Syed Ahmad Nameer, Partner Manager, Middle East and Eastern Europe, EOS, Germany.

Continued...

Defense


https://pigeonis.in/blog/the-impact-of-diones-on-future-of-militery-warfare/
https://www.alioutdoor.com/2018/04/03/thermal-defense-solutions-3d-printed-steel-sound-suppressors/
https://www.alioutdoor.com/2018/04/03/thermal-defense-solutions-3d-printed-steel-sound-suppressors/
https://www.alioutdoor.com/2018/04/03-htmm-militery-d-Point-ACH-MICH-PASGT-ACU-Chin-Strap-coyote-brown-marines-usmomarine-helm-halmes-kinnariemen-armyshop-armyship-astroen-harinemarine-helm-halmes-kinnariemen-armyshop-armyship-astroen-harine-

18


Spare Parts will be a focus point!

One production run - several different parts

Reduction of Assembly steps

Digital Spare Parts

Operations Efficiency

Source: EOS

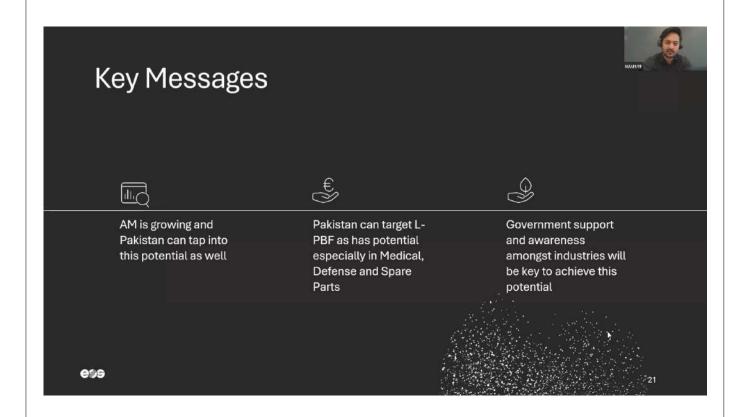
19

by Mr. Syed Ahmad Nameer, Partner Manager, Middle East and Eastern Europe, EOS, Germany.

Continued...

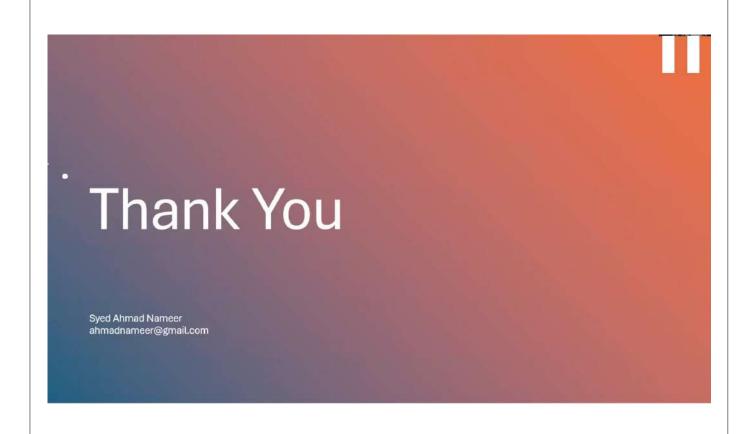
Why has Pakistan not yet Achieved its Potential?

Lack of Government Support


- Export Control Issues (Material)
- No Competence
 Centers
 No proper feasible
- No proper feasible AM policy

Lack of Knowledge

- Mismanaged
 Expectations
- Unknown PotentialCapacity to learn lacking


Lack of Strategy

- Investment Mindset
- Barriers to entry
- High Risk investment due to higher initial CAPEX

by Mr. Syed Ahmad Nameer, Partner Manager, Middle East and Eastern Europe, EOS, Germany.

Continued...

Dr. Khalid Rahman, Professor - Faculty of Mechanical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan.

36th Symposium on "Printed Electronics — Prospects of Additive Manufacturing in Pakistan"

The Pakistan Academy of Engineering. June 21, 2025

Khalid Rahman (PhD)
Faculty of Mechanical Engineering

PRINTED ELECTRONICS LAB, FME, GIKI

1

Self-Introduction

Khalid Rahman (PhD)

Khalid.rehman@giki.edu.pk

Address:

G-01, Faculty of Mechanical Engineering (Since 2012)

Ghulam Ishaq Khan Institute of Engineering Sciences and Technology

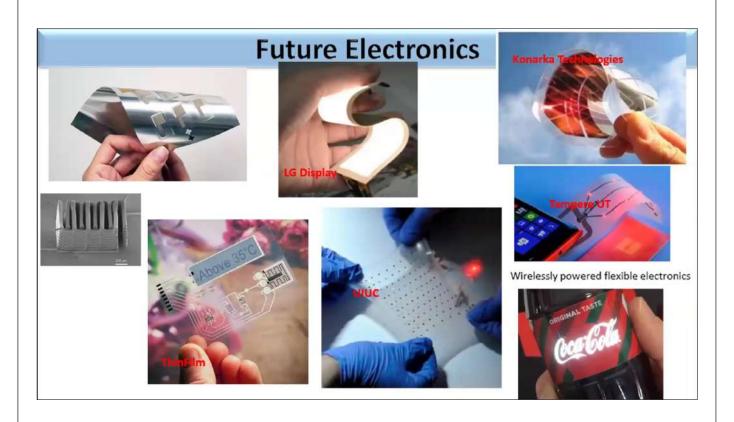
Work Experience:

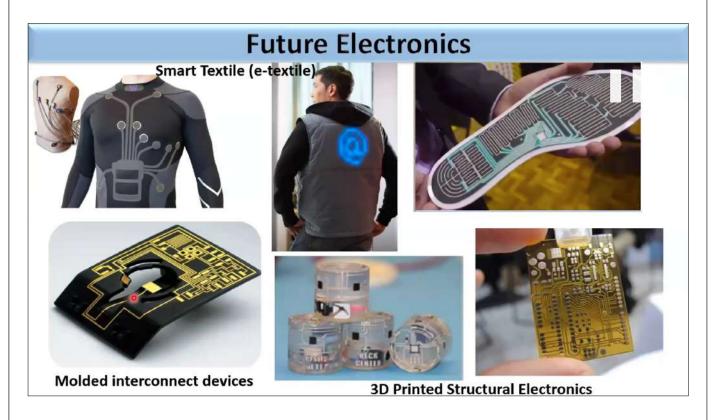
- Professor Faculty of Mechanical Engineering at Ghulam Ishaq Khan Institute of Engineering Sciences and Technology.
- Senior Scientist Ubiquitous Sensing (USE) Lab, Klagenfurt University and Silicon Austria Labs, Austria (from July 2023 till January 2024)
- 7 years of industrial experience

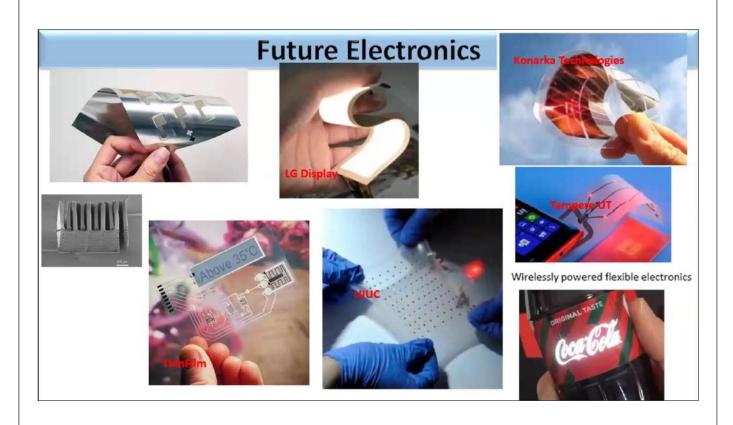
Research Interests:

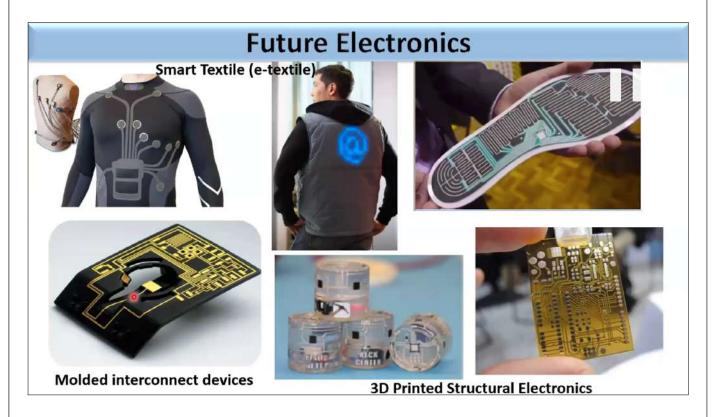
 Electrohydrodynamic Inkjet Printing, Direct Write Technology, Printed Electronics, ANSYS (linear and nonlinear Structural Analysis)

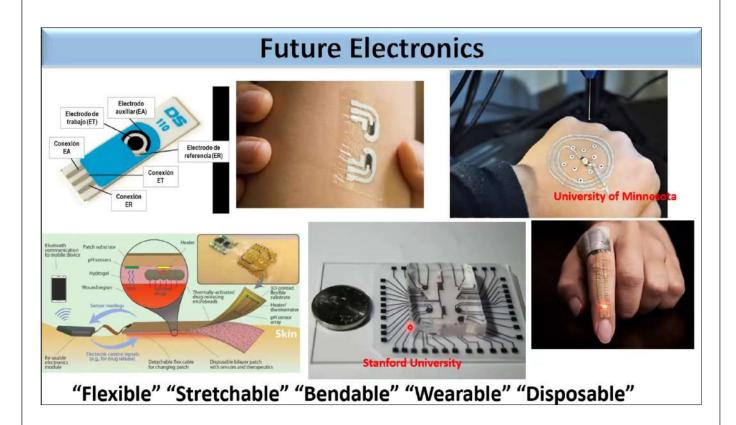
by Dr. Khalid Rahman, Professor - Faculty of Mechanical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan Continued...

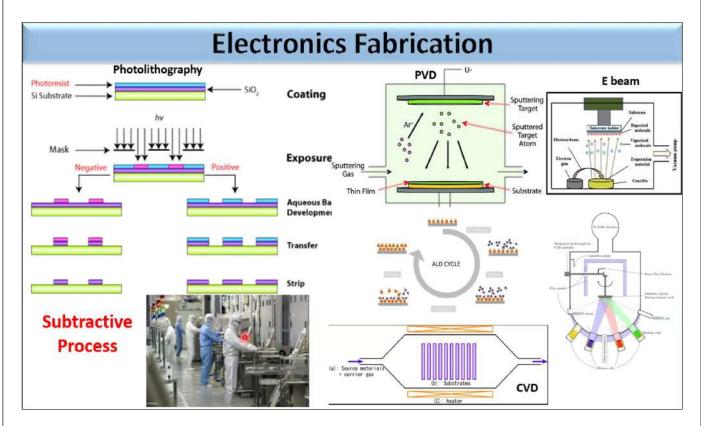

Additive Manufacturing

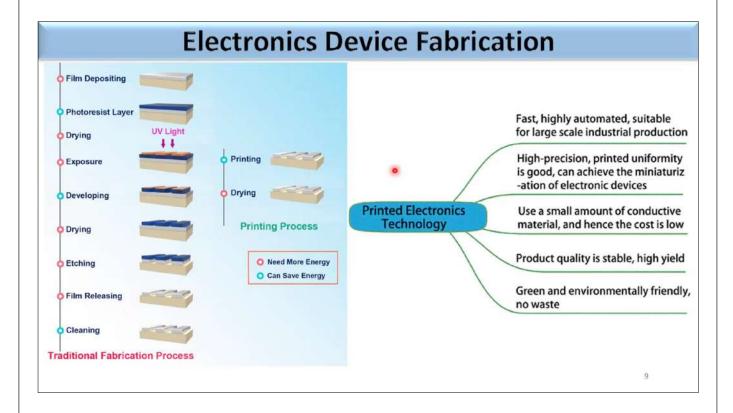

"Additive Manufacturing is the process of joining materials to make parts from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing and formative manufacturing methodologies"


ASTM F2792

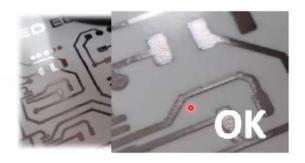


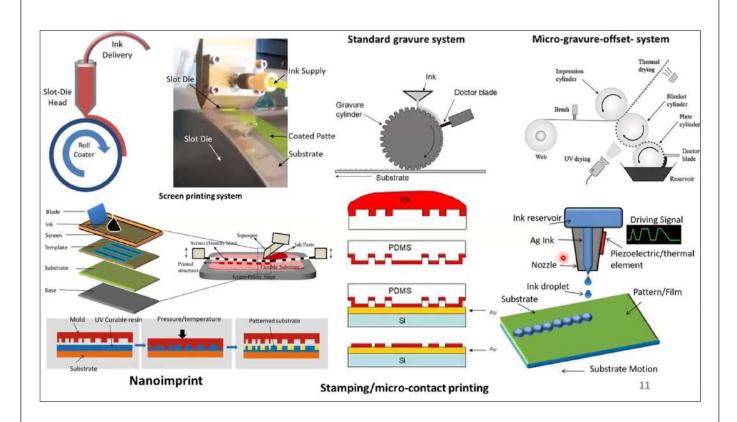


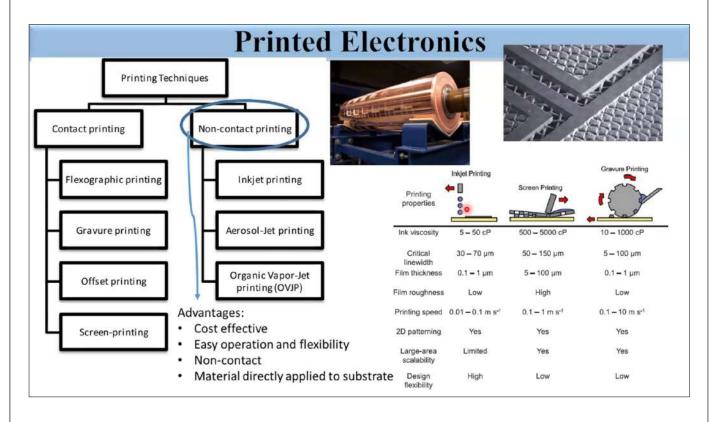




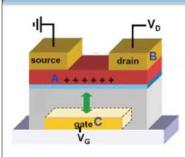
by Dr. Khalid Rahman, Professor - Faculty of Mechanical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan Continued...




Printed Electronics as Additive Manufacturing


Printed electronics is a subset of additive manufacturing that involves the layer-by-layer deposition of functional materials—such as conductive, semiconductive, and dielectric inks—onto various substrates using printing techniques (e.g., inkjet, screen, aerosol jet).

Printing Beyond Color



by Dr. Khalid Rahman, Professor - Faculty of Mechanical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan Continued...

Printed Electronics

Conductor

Carbon, silver, aluminum flakes, Polypyrrole, polyacetylene, thiophenes (PEDOT:PSS), Metal nanoparticles (Ag, Au, Cu, Ni), Carbon nanotubes, metal nanowires, Graphene

Insulator

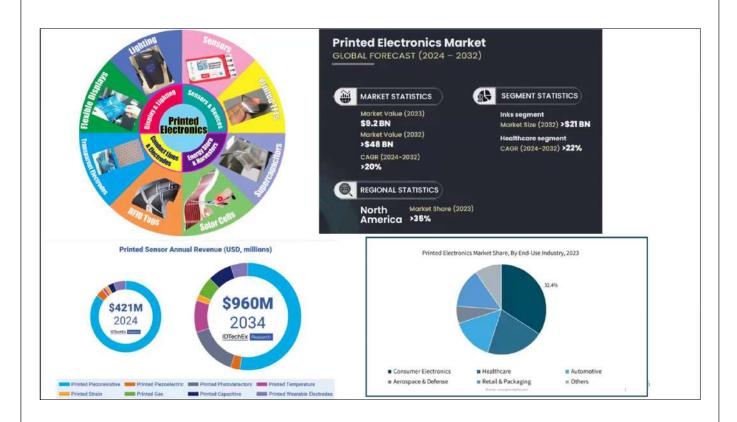
Thin film Transistor (TFT)

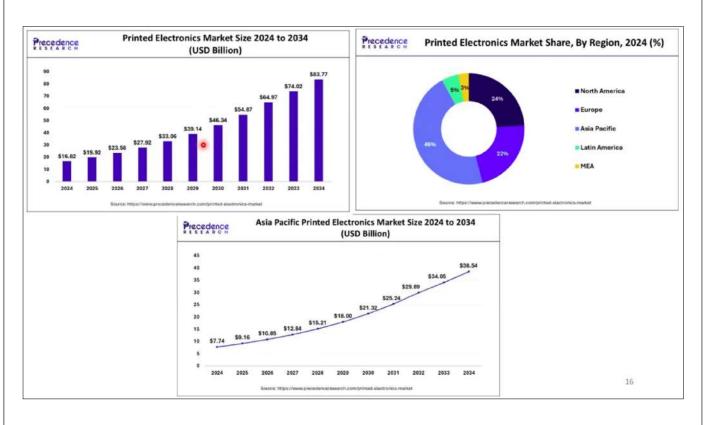
Oxides, nitrides, Polymer dielectrics (PVP, PMMA, ...)

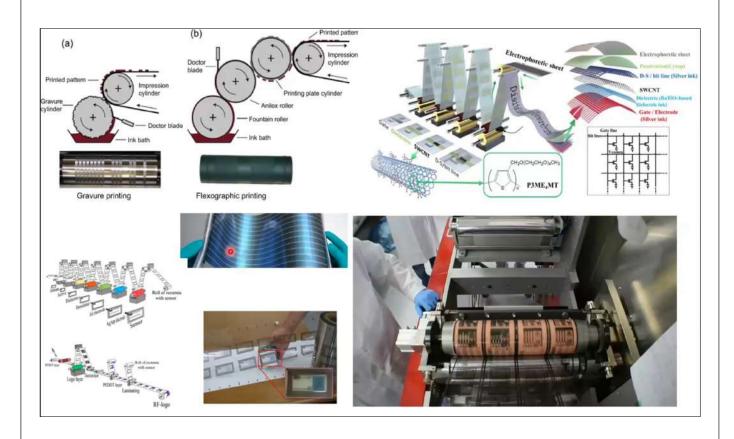
Organic semiconductors (small molecule, polymer), Oxide Semiconductors (ZnO, InGaZnO), CNT, Nanowires, nanoribbons (Si, GaAs), Nanoparticles (Si, CdSe, ZnSe)

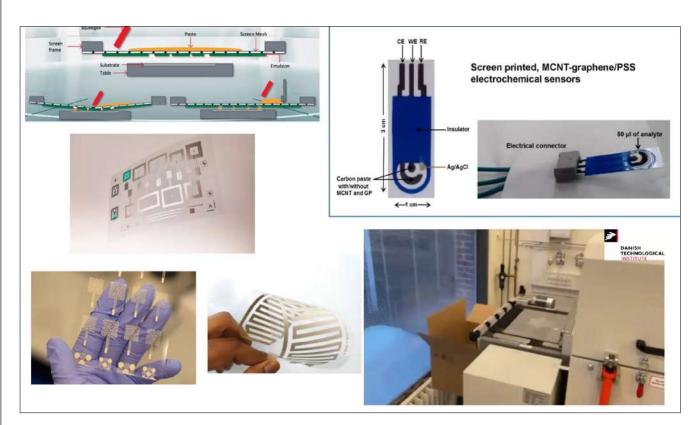
13

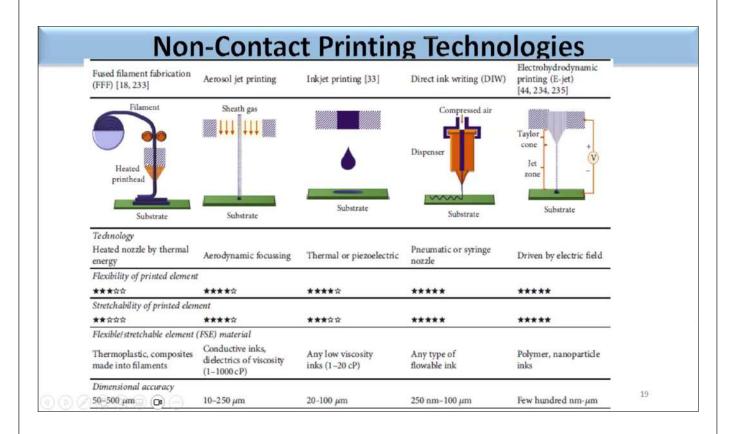
Printed Electronics

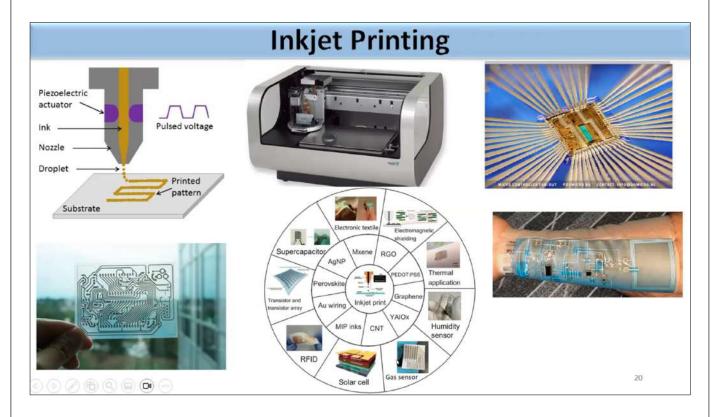

Traditional Electronics

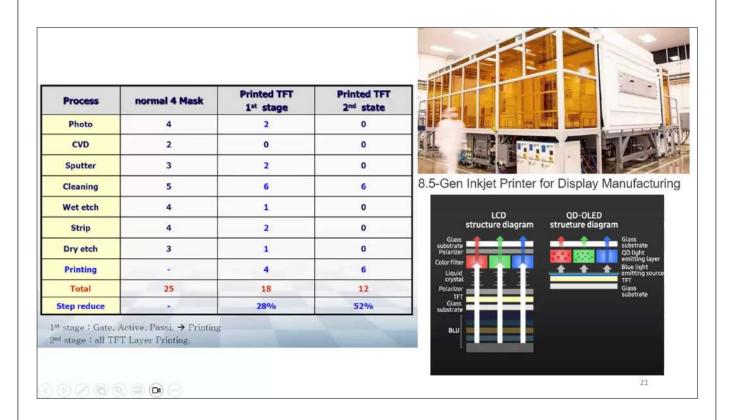

- Made in batches on wafers in cleanroom
- Devices run fast
- Layers added in furnace, vacuum or crystal growth
- High resolution
- Expensive processing
- Rigid silicon wafers or glass
- Devices are small
- Not transparent
- Established
- A cohesive industry

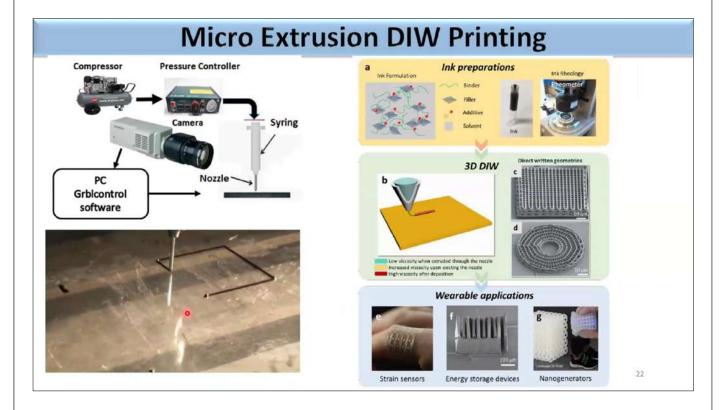

Printed Electronics

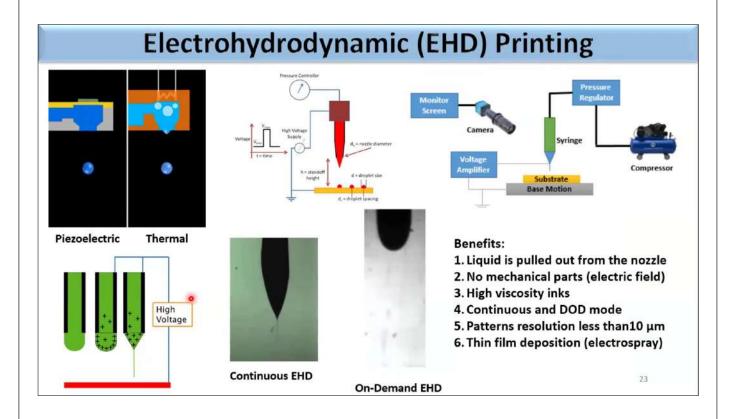

- Can be printed on a roll (or batch processed) non-cleanroom
- Devices run slowly (no plastic Pentium)
- Layers added by printing (or vacuum)
- Lower resolution
- Cheap processing
- Flexible films –paper plastic, or rigid (glass)
- · Devices small or large
- · Can be transparent
- Early-Stage Technology
- Diverse industry

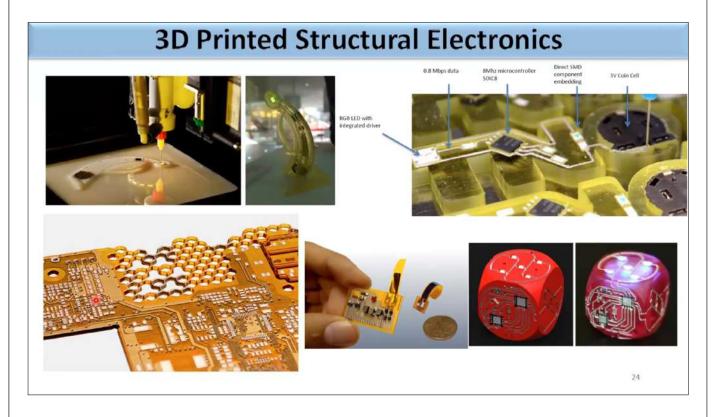

14

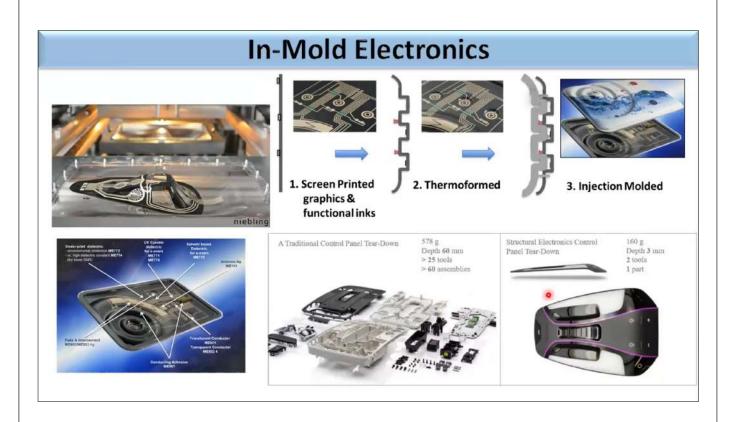










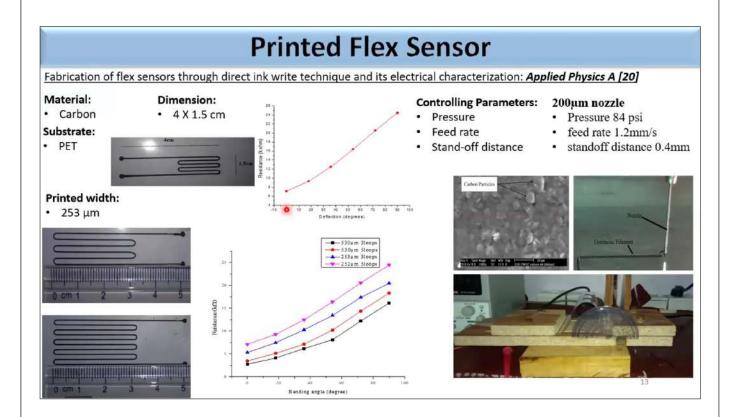


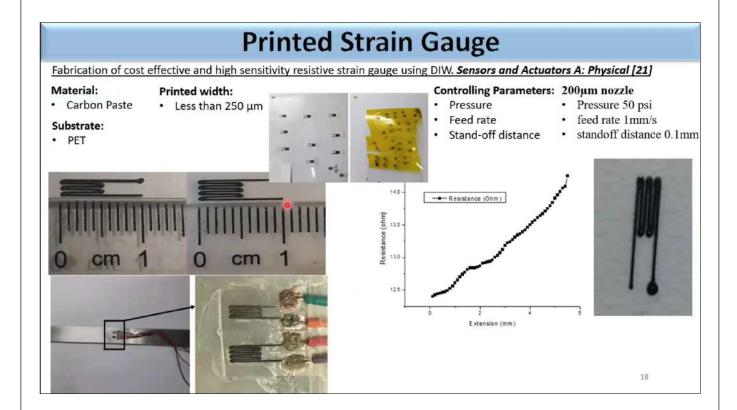
by Dr. Khalid Rahman, Professor - Faculty of Mechanical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan Continued...

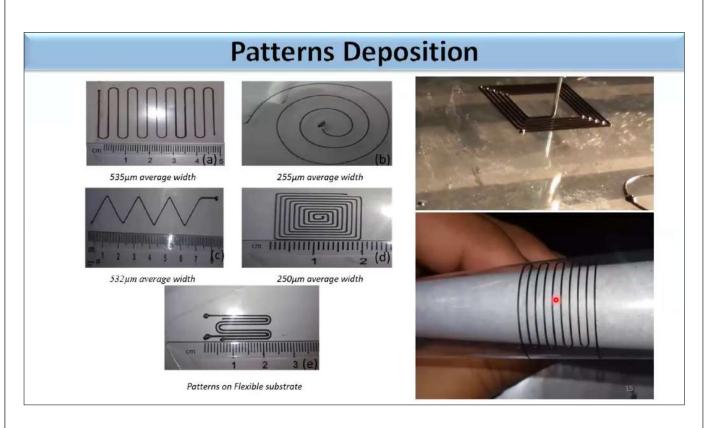
Research at GIK Institute

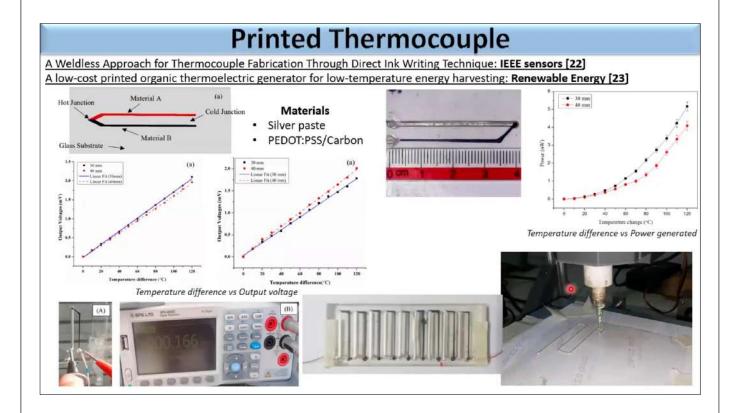
26

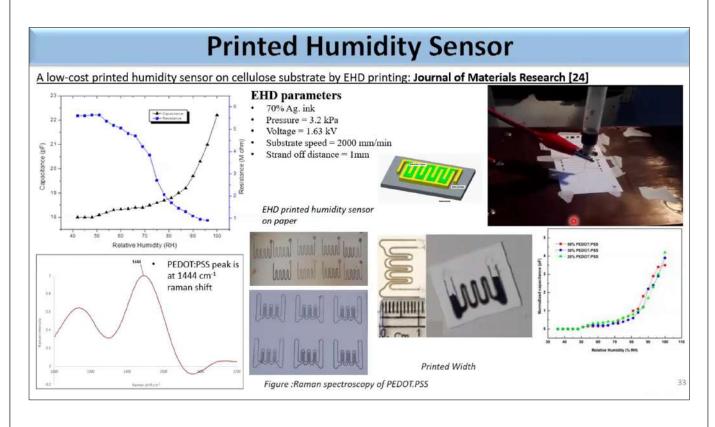
by Dr. Khalid Rahman, Professor - Faculty of Mechanical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan Continued...

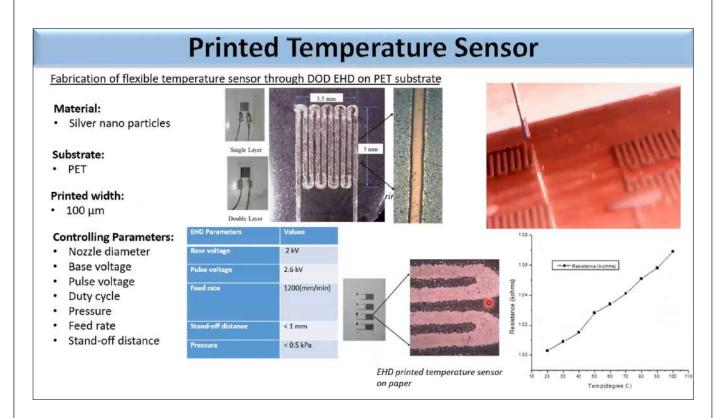

Printed Sensors

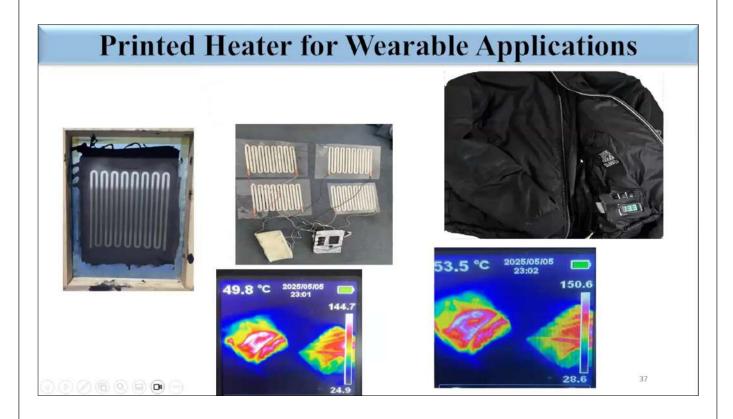

- Printed Strain gauge
- Printed Flex sensor
- · Printed Humidity sensor
- · Printed Temperature sensor
- · Printed thermocouple/TEG
- Printed Micro-heaters

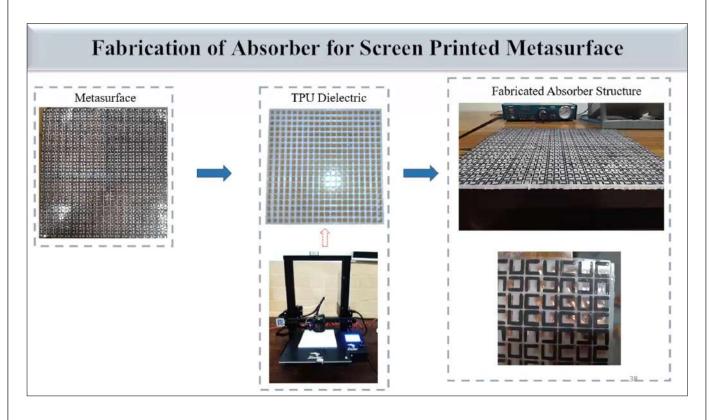

Sensors were printed at **Printed Electronics Lab**, Faculty of Mechanical, Ghulam Ishaq Khan Institute of Science and Technology, Topi-Swabi, Pakistan.

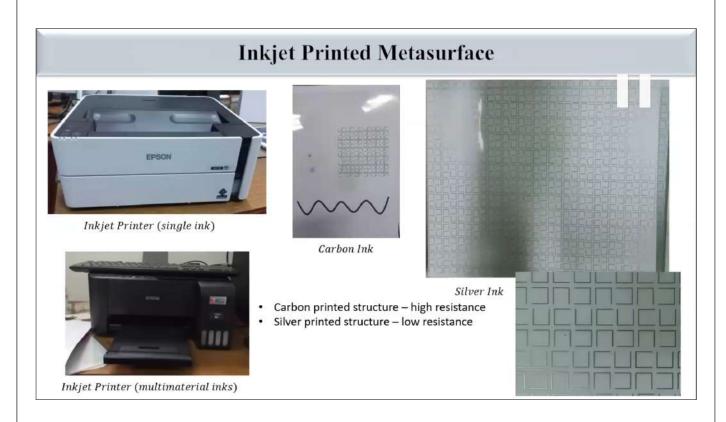


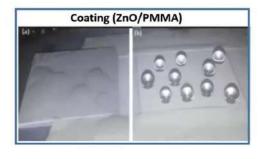






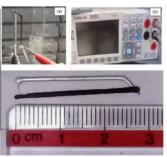





by Dr. Khalid Rahman, Professor - Faculty of Mechanical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan Continued...

Printed Electronics Lab

Facilities Available


- EHD printing
- · Direct Ink Writing technique
- Spray coating through EHD (electrospray and spray gun)
- · Sample sintering/curing
- · Characterization of printed samples
- · Ink preparation apparatus

Research in-progress

- · EHD printing resolution
- · Printed Thermocouples
- · Printed sensors
- Printed TEGs
- Spray coatings

by Dr. Khalid Rahman, Professor - Faculty of Mechanical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan

Continued...

Limitations and Challenges

- Ink formulation (adjusted viscosity, surface tension, evaporation rat)
- Ink stability (e.g. particle agglomeration, settling,...)
- Substrate quality (surface energy, roughness control)
- Layer to layer registration (self-alignment)
- Jetting-reliability (monitoring, redundancy)
- · Process/solvent compatibility
- Device performance
- Resolution

4

Prospects of Printed Electronics for Pakistan

· Low-Cost, Scalable Manufacturing

- PE uses inexpensive materials (e.g. carbon-based inks, silver nanoparticles) and simple printing techniques.
- Ideal for resource-limited environments where affordability is crucial.

Enabling Technologies for Local Challenges

- Healthcare: Printed biosensors for diagnostics in rural areas.
- · Agriculture: Smart packaging and environmental sensors.
- Energy: Printed solar cells and thermoelectric harvesters for off-grid regions.
- Education: Low-cost educational electronics and lab kits.

Industrial Potential

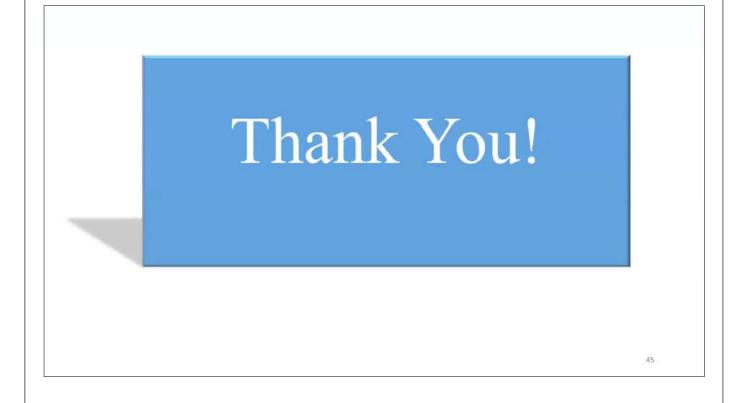
- Opportunity to build local supply chains for inks, substrates, and printed components.
- Integration with existing textile, paper, and packaging industries.
- Possibility of attracting foreign direct investment (FDI) in flexible electronics and IoT manufacturing.

by Dr. Khalid Rahman, Professor - Faculty of Mechanical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan Continued...

Prospects of Printed Electronics for Pakistan

Academic and R&D Growth

- Pakistan's universities and research centers can develop expertise in: Materials science (nano-inks, substrates)
- Printable energy devices
- Sensor design International collaboration can boost technology transfer and training.


Sustainability and Energy Efficiency

- PE supports green manufacturing: low material waste, energyefficient processes.
- Printable solar panels and energy-harvesting devices support sustainable development goals (SDGs).

4

Recommendations for Pakistan

- Launch national R&D initiatives focused on printed electronics.
- Encourage public-private partnerships for prototyping and scaling.
- Provide funding and policy incentives for startups and tech incubators.
- Foster international collaboration for capacity building.

by

Engr. Dr. Shaheryar Atta Khan, HoD (Mechanical Engineering), DHA Suffa University, Karachi, Pakistan.

Additive Manufacturing in Pakistan: Current Penetration and Key Challenges

Presented by

Engr. Dr. Shaheryar Atta Khan

HoD Mechanical Engineering

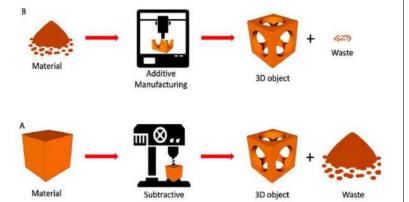
DHA Suffa University

21st June, 2025

Additive Manufacturing in Pakistan: Current Penetration and Key Challenges

FROM IMAGINATION TO REALITY FROM IMAGINATION TO REALITY IDEA CAD MODEL 3D PRINT Additive Manufacturing in Pakistan: Current Penetration and Key Challenges

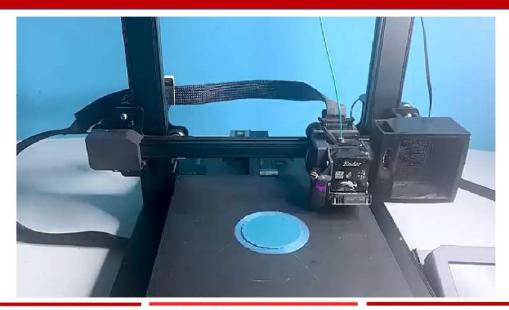
By Engr. Dr. Shaheryar Atta Khan, HoD (Mechanical Engineering), DHA Suffa University, Karachi, Pakistan


Continued...

Additive Manufacturing

Additive Manufacturing is a process of creating three-dimensional objects by building them layer by layer from a digital model, typically using materials such as plastics, metals, or composites.

Unlike traditional subtractive methods that remove material from a solid block, additive manufacturing adds material only where needed, enabling complex geometries, reduced waste, and rapid prototyping.


Source: https://bitfab.io/blog/additive-manufacturing/

21st June, 2025

Additive Manufacturing in Pakistan: Current Penetration and Key Challenges

Additive Manufacturing

21st June, 2025

Additive Manufacturing in Pakistan: Current Penetration and Key Challenges

By Engr. Dr. Shaheryar Atta Khan, HoD (Mechanical Engineering), DHA Suffa University, Karachi, Pakistan

Continued...

21st June, 2025

Additive Manufacturing in Pakistan: Current Penetration and Key Challenges

5

Additive Manufacturing

CAD Model - - -

----3D Object

3D Cad Model

.STL File

Slicing Software

Layer Slices & Tool Path

3D Printer

3D Object

21st June, 2025

Additive Manufacturing in Pakistan: Current Penetration and Key Challenges

By Engr. Dr. Shaheryar Atta Khan, HoD (Mechanical Engineering), DHA Suffa University, Karachi, Pakistan

Continued...

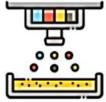
Type of Additive Manufacturing Technologies

Material Extrusion

Vat Polymerization

Powder Bed Fusion

Material Jetting


21st June, 2025

Additive Manufacturing in Pakistan: Current Penetration and Key Challenges

7

Type of Additive Manufacturing Technologies

Directed Energy Deposition

Sheet Lamination

21st June, 2025

Additive Manufacturing in Pakistan: Current Penetration and Key Challenges

By Engr. Dr. Shaheryar Atta Khan, HoD (Mechanical Engineering), DHA Suffa University, Karachi, Pakistan

Continued...

From Prototyping to Smart Manufacturing

- · 1980s The Birth of AM
 - Charles Hull invented Stereolithography (SLA) and filed a patent 1984
 - The first commercial 3D printer, the SLA-1, was released by 3D Systems 1988
- 1990s Technology Diversification
 - Fused Deposition Modeling (FDM) was developed and patented by Scott Crump, who co-founded Stratasys – 1990
 - 3D printing remained mainly in prototyping and R&D sectors during this period
- 2000s Wider Adoption and Research
 - · Additive manufacturing began moving from rapid prototyping to functional parts
 - The open-source RepRap Project was launched, enabling users to build low-cost 3D printers 2005
 - The first self-replicating 3D printer was created, significantly reducing the entry cost 2008

21st June, 2025

Additive Manufacturing in Pakistan: Current Penetration and Key Challenges

9

From Prototyping to Smart Manufacturing

- · 2010s Industrial and Consumer Growth
 - Metal 3D printing technologies like Direct Metal Laser Sintering (DMLS) and Electron Beam Melting (EBM) gained traction
 - Major industries (aerospace, automotive, healthcare) started using AM for end-use parts
 - Additively Manufactured LEAP Fuel Nozzle made its first flight 2016
 - Custom medical devices (e.g., implants, prosthetics) and bioprinting saw rapid growth
- 2020s Integration into Smart Manufacturing
 - AM is now a key part of Industry 4.0, integrated with IoT, AI, and digital twins
 - · Advances in multi-material, multi-axis, and large-scale printing have emerged
 - Applications have expanded to construction (3D printed houses), food (3D printed meals), and space (NASA printing tools on ISS)

21st June, 2025

Additive Manufacturing in Pakistan: Current Penetration and Key Challenges

By Engr. Dr. Shaheryar Atta Khan, HoD (Mechanical Engineering), DHA Suffa University, Karachi, Pakistan

Continued...

LEAP Fuel Nozzle a Breakthrough

- The LEAP (Leading Edge Aviation Propulsion) engine is a high-bypass turbofan developed by CFM International, a joint venture between GE Aviation and Safran Aircraft Engines.
- GE Aviation redesigned the traditional 20-part nozzle as a single-piece component using Direct Metal Laser Melting (DMLM), a form of metal 3D printing. 25% lighter and 500% more dureable

Source: https://www.geaerospace.com/

21st June, 2025

Additive Manufacturing in Pakistan: Current Penetration and Key Challenges

11

LEAP71 AI Designed Rocket Engine

- developed an Al system Noyron that autonomously generates the full 3D geometry of the rocket engine, performs thermal and thrust models based on the input thrust, propellant type, chamber pressure as inputs.
- The 3d model is then additively manufactured
- They designed and produced a 5 kN liquid-fuel rocket engine and it was hot-fire tested in 2024

Source: https://www.leap71.com/

21st June, 2025

Additive Manufacturing in Pakistan: Current Penetration and Key Challenges

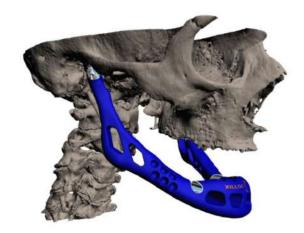
By Engr. Dr. Shaheryar Atta Khan, HoD (Mechanical Engineering), DHA Suffa University, Karachi, Pakistan

Continued...

LEAP71 AI Designed Rocket Engine

Source: https://www. leap71.com/

21st June, 2025


Additive Manufacturing in Pakistan: Current Penetration and Key Challenges

13

Additively Manufactured Implants

 LayerWise, a KU Leuven spin-off, additively manufactures the world's first patient-specific lower jaw which was implanted to treat a senior patient's progressive osteomyelitis of almost the entire lower jawbone, medical specialists and surgeons opted for such a complete patient-specific implant the first time ever.

Source: https://www.kuleuven.be/

21st June, 2025

Additive Manufacturing in Pakistan: Current Penetration and Key Challenges

By Engr. Dr. Shaheryar Atta Khan, HoD (Mechanical Engineering), DHA Suffa University, Karachi, Pakistan

Continued...

Additively Manufactured Prosthesis

- Hero Arm is a clinically approved myoelectric prosthetic for children (8+) and adults with below-elbow limb differences
- Additively Manufactured using Nylon 12, it's custom-fit via 3D scanning.

Source: https://openbionics.com/en/hero-arm/

21st June, 2025

Additive Manufacturing in Pakistan: Current Penetration and Key Challenges

15

Additively Manufactured Prosthesis

- MARC Protez is Turkey's first indigenous, additively manufactured prosthetic arm developed at Koc University.
- Developed by a Pakistani PhD Scholar to aid day-to-day activities of a university employee.

Source: https://www.ku.edu.tr/

21st June, 2025

Additive Manufacturing in Pakistan: Current Penetration and Key Challenges

By Engr. Dr. Shaheryar Atta Khan, HoD (Mechanical Engineering), DHA Suffa University, Karachi, Pakistan

Continued...

Current Penetration in Pakistan

- Development Phase (2010–2015)
 - · Universities like NUST and NEDUET Commissioned 3D printers
 - 3D printer was developed in 2011 NUST-PNEC as a student final year projects
 - · Some tech enthusiasts and hobbyists started assembling DIY RepRap printers
 - Participation in exhibitions like IDEAS helped showcase 3D-printed models and tools
 - · Local dental labs began exploring resin-based SLA/DLP printers for dental crowns and aligners
- Expansion and Diversification (2015–2020)
 - Startups such as Objexyz, Browide3D, Grit3D, and Quantum3D began offering commercial 3D printing services for prototyping and small-batch production
 - AM was adopted by defense R&D institutes (NESCOM, NDC) for prototyping UAV and weapon parts
 - Bioniks 3D in collaboration with NEDUET started making opensource prosthesis
 - CoE-PIAM3D established at NCP Islamabad

21st June, 2025

Additive Manufacturing in Pakistan: Current Penetration and Key Challenges

17

Current Penetration in Pakistan

- Healthcare Focus (2020–2024)
 - NGOs and university teams used AM to build low-cost prosthetics, especially for child amputees and war victims
 - Aga Khan University Hospital (AKUH) led innovation in 2023–24 by Developing DRAP approved PEEK cranial and spinal implants and performing successful surgeries
 - 3D scanning + printing orthotic devices became popular in Lahore, Islamabad, and Karachi clinics using FDM and PETG
 - · Pakistan's first concrete 3D printer was developed
- Recent Advances & Institutional Push (2024–2025)
 - Pakistan Institute of Additive Manufacturing (PIAM) organized an international AM event, highlighting local research in aerospace and biomedicine

21st June, 2025

Additive Manufacturing in Pakistan: Current Penetration and Key Challenges

By Engr. Dr. Shaheryar Atta Khan, HoD (Mechanical Engineering), DHA Suffa University, Karachi, Pakistan

Continued...

Additive Manufacturing in Pakistan

Source: https://bioniks.org/

21st June, 2025

Additive Manufacturing in Pakistan: Current Penetration and Key Challenges

PEEK Implants: Unlocking Innovation

The Ray Khar (Mountain)

19

Key Challenges

- Policy & Regulation: Lack of formal frameworks and incentives
 - Unclear HS Codes and the requirement of NOCs from Mol & MoD for importing 3D printers, filaments, powders, and resins often lead to delays or excessive duties
 - · No tax exemptions or subsidies for industrial AM equipment
 - No AM-specific national strategy, which leads to fragmented growth without targeted investment
- Startups and SMEs hesitate to scale due to high import costs and regulatory ambiguity

21st June, 2025

Additive Manufacturing in Pakistan: Current Penetration and Key Challenges

By Engr. Dr. Shaheryar Atta Khan, HoD (Mechanical Engineering), DHA Suffa University, Karachi, Pakistan

Continued...

Key Challenges

- Infrastructure: Unreliable utilities and high operational costs
 - Unstable electricity supply leads to frequent failures during long 3D print jobs.
 - High costs of quality materials (filaments, powders, resins) due to import dependency.
- Limited throughput, high part rejection, and discouragement for industrial-scale use.

21st June, 2025

Additive Manufacturing in Pakistan: Current Penetration and Key Challenges

21

Key Challenges

- Skills Shortage: Limited expertise in design for AM (DfAM)
 - Engineering curricula in most universities lack modules on AM, especially in relation to generative design, topology optimization, or multi-material systems
 - Lack of **cross-disciplinary collaboration** (materials, software, mechanical, electrical).
- AM is used to replicate parts traditionally instead of innovating with new geometries, reducing ROI

21st June, 2025

Additive Manufacturing in Pakistan: Current Penetration and Key Challenges

By Engr. Dr. Shaheryar Atta Khan, HoD (Mechanical Engineering), DHA Suffa University, Karachi, Pakistan

Continued...

Key Challenges

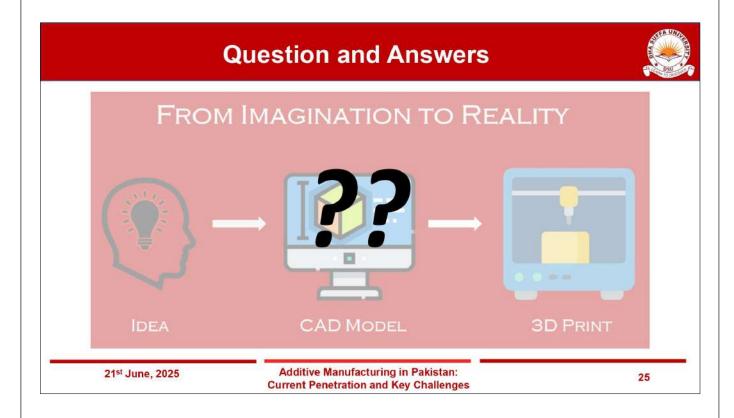
- Market Demand: Low awareness and commercial confidence
 - Industry stakeholders—especially auto part manufacturers—lack awareness of AM's potential beyond prototyping
 - Return on investment (ROI) is questioned due to perceived low reliability and material strength
 - There's a disconnect between academia, startups, and industry.
- Slow adoption, limited industrial projects, and underutilized lab capacities

21st June, 2025

Additive Manufacturing in Pakistan: Current Penetration and Key Challenges

23

Conclusion


- Pakistan is on the right track, yes a few years behind the rest of the world
- Just a nudge in terms of Policy, Training, and Synergy between academia and the industry is required

21st June, 2025

Additive Manufacturing in Pakistan: Current Penetration and Key Challenges

By Engr. Dr. Shaheryar Atta Khan, HoD (Mechanical Engineering), DHA Suffa University, Karachi, Pakistan

Continued...

3.5. "Opportunities and Challenges for Pakistan in Additive Manufacturing?"

by

Engr. Dr. Waqas Ahmed, Associate Professor, NUST Business School, Islamabad, Pakistan.

Prospects of Additive Manufacturing in Pakistan

Dr. Waqas Ahmed Associate Professor NUST Business School

Global Overview

- Size of the global AM market (e.g., USD 20+ billion and growing)
- Key players and countries leading AM innovation (USA, Germany, China)
- Trends: Customization, Decentralized Manufacturing, Rapid Prototyping

3.5."Opportunities and Challenges for Pakistan in Additive Manufacturing?"

By Engr. Dr. Waqas Ahmed, Associate Professor, NUST Business School, Islamahad, Pakistan Continued...

Relevance to Pakistan

- Manufacturing sector's role in GDP (~13-15%)
- Need for innovation to stay competitive
- Young population and growing tech adoption

Current State of AM in Pakistan

- Pioneers: Research institutions like NUST, GIKI, and PIEAS
- Limited industrial adoption but growing interest
- Presence of service bureaus, 3D printing startups

3.5."Opportunities and Challenges for Pakistan in Additive Manufacturing?"

By Engr. Dr. Waqas Ahmed, Associate Professor, NUST Business School, Islamahad, Pakistan Continued...

Opportunities

- Industrial Prototyping: Fast and cost-effective prototyping for SMEs
- Tooling & Jigs: Reduction in lead time and cost
- Healthcare: Customized implants, prosthetics
- Construction: 3D-printed housing for disaster relief
- Defense & Aerospace: Lightweight parts, rapid iteration

Strategic Advantages for Pakistan

- Cost-effective skilled labor
- Strategic location for exports
- Emerging startup ecosystem
- Government incentives for innovation and digitization

3.5. "Opportunities and Challenges for Pakistan in Additive Manufacturing?"

By Engr. Dr. Waqas Ahmed, Associate Professor, NUST Business School, Islamahad, Pakistan Continued...

Success Stories (Local & International)

- Local: NUST's AM center, Pakistani startups offering 3D printing services
- International: GE, Boeing, Siemens adopting AM at scale

Challenges

- High initial investment cost
- · Lack of skilled workforce
- Limited availability of raw materials
- Need for standardization and regulation

3.5."Opportunities and Challenges for Pakistan in Additive Manufacturing?"

By Engr. Dr. Waqas Ahmed, Associate Professor, NUST Business School, Islamahad, Pakistan Continued...

Way Forward

- Industry-academia collaboration
- Investment in R&D and pilot projects
- AM curriculum in engineering and technical programs
- Government support through policy and funding

Call to Action

- For Industry: Explore pilot projects and training
- For Academia: Develop talent and applied research
- For Students: Learn AM tools and software, pursue certifications

lanufacturi			in Additive Business School, Is	lamabad, Pakista Continued
	ques	floor fo nd disc		

The Pakistan Academy of Engineering (PAE)	
THE FARISTAN ACAUCINY OF ENGINEERING (PAE)	
Address: E-16/2, Block-7, Gulshan-e-Iqbal, Karachi	
Audi Coo. E-10/2, Diock-1, Walshall-C-14Dal, Rafacill	
Tel.: 021-34831726	
E-mail: info@pacadengg.org	
- r · · · · · · · · · · · · · · ·	